Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Oswald M. Peeters, ${ }^{\text {a }}{ }^{*}$ Norbert M. Blaton, ${ }^{\text {a }}$ John G. Gerber ${ }^{\text {b }}$ and Joseph Gal ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit
Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium, and ${ }^{\mathbf{b}}$ Division of Clinical Pharmacology, School of Medicine, University of Colorado, UCHSC Box C237, Denver, CO 80262, USA

Correspondence e-mail:
maurice.peeters@farm.kuleuven.ac.be

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.038$
$w R$ factor $=0.108$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

# (+)-cis-1-Acetyl-4-(4-\{[(2R,4S)-2-(2,4-dichloro-phenyl)-2-(1H-imidazol-1-ylmethyl)-1,3-dioxolan-$4-y I] m e t h o x y\}$ phenyl)piperazine $[(2 R, 4 S)$-(+)-ketoconazole] 

The title compound, $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$, the (+)-enantiomer of the orally active broad-spectrum antifungal agent ketoconazole, crystallizes in space group $P 1$ with two molecules in the unit cell. Both molecules have the $2 R, 4 S$ configuration, but the achiral parts of the molecules are packed in a pseudocentrosymmetric fashion.

## Comment

The title compound, (I), is the (+)-enantiomer of ketoconazole, an orally active broad-spectrum antimycotic. The antifungal activity of ketoconazole is thought to be due to inhibition of a fungal cytochrome P-450 mixed-function oxidase, which catalyses $14-\alpha$-demethylation of sterols in the conversion of lanosterol to ergosterol (Van den Bossche et al., 1980).

(I)

As is typical for azole compounds, ketoconazole binds to many mammalian P-450 enzymes, and a number of side effects are associated with ketoconazole as a result of inhibition of these mammalian enzymes (Mason, 1993). Clinically, ketoconazole is administered as the racemic mixture of the (+)- and $(-)$-enantiomers. There are numerous known examples of different pharmacological properties between stereoisomers (Ariens et al., 1988). The enantioselective synthesis of (+) and ( - )-ketoconazole and its (+)- and ( - -trans-isomer are described by Rotstein et al. (1992). They also evaluated their selectivity in inhibiting a number of cytochrome P-450 enzymes. To check the assignment of the absolute configuration by the stereospecific synthesis, we determined the crystal structure and absolute configuration of (+)-ketoconazole by X-ray diffraction.
$(+)$-Ketoconazole crystallizes in space group $P 1$ with two molecules in the unit cell. Both have the $2 R, 4 S$ configuration, which confirms the assignment of the stereospecific synthesis. The two molecules are related to each other in a centrosymmetric fashion, to an extent of $91 \%$, with a pseudo-inversion center at $x=\frac{1}{2}, y=\frac{1}{2}, z=\frac{1}{2}$. The largest differences in corresponding bond lengths and angles of the two molecules are in the external angles of the 1,3-dioxolane rings and the angles of the methoxy bridges, probably to accommodate the molecules

Received 28 January 2004 Accepted 9 February 2004 Online 14 February 2004


Figure 1
Perspective view of the two molecules in the asymmetric unit, with the atomic numbering scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level.
in the pseudo-centrosymmetric packing arrangement. The conformations of the 1,3-dioxolane rings are halfway between an envelope with flap at the unsubstituted C atom and a form twisted about $\mathrm{C} 10-\mathrm{O} 11$ and $\mathrm{C} 60-\mathrm{O} 71$, respectively. The piperazine rings have chair conformations, somewhat flattened at N31 and N81 due to $s p^{2}$ hybridization of those atoms.

The conformation of molecule $\mathrm{N} 1-\mathrm{C} 36$ is similar to that of conformer $A$ of the crystal structure of racemic ketoconazole (Peeters et al., 1979). An r.m.s. fit (Hypercube, 1993) of all the non-H atoms gave an r.m.s. deviation of $0.09 \AA$.

Packing of the molecules is achieved by $\mathrm{C}-\mathrm{H} \cdots A(A=\mathrm{O}$, $\mathrm{N}, \mathrm{Cl})$ interactions.

## Experimental

The title compound, (I), was obtained from the racemic mixture via semi-preparative HPLC resolution, as described by Dilmaghanian et al. (2004). Single crystals were grown by slow evaporation of a methanol/4-methyl-2-pentanone solution.

## Crystal data

$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$
$M_{r}=531.42$
Triclinic, $P 1$
$a=10.3740$ (5) A
$b=10.8633$ (7) $\AA$
$c=13.2251$ (4) $\AA$
$\alpha=67.725(3)^{\circ}$
$\beta=79.262(4)^{\circ}$
$\gamma=65.743(4)^{\circ}$
$V=1256.60(12) \AA^{3}$

## Data collection

Siemens $P 4$ four-circle diffractometer

## $\omega / 2 \theta$ scans

Absorption correction: $\psi$ scan XEMP (Siemens, 1989) $T_{\text {min }}=0.344, T_{\text {max }}=0.557$
8445 measured reflections
8445 independent reflections

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.405 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$\mathrm{Cu} \mathrm{K} \alpha$ radiation
Cell parameters from 38 reflections
$\theta=11.2-28.0^{\circ}$
$\mu=2.66 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colorless
$0.60 \times 0.36 \times 0.22 \mathrm{~mm}$

$$
\begin{aligned}
& 8257 \text { reflections with } F^{2}>2 \sigma\left(F^{2}\right) \\
& \theta_{\max }=69.2^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-12 \rightarrow 12 \\
& l=-16 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.108$
$S=1.05$
8445 reflections
652 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0737 P)^{2}\right.$
$+0.1938 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0274 (9)
Absolute structure: Flack (1983); 3977 Friedel pairs
Flack parameter $=0.017(8)$

Table 1
Selected geometric parameters $\left({ }^{\circ}\right)$.

| C6-C7-O8 | $109.6(2)$ | C56-C57-O58 | $111.4(2)$ |
| :--- | ---: | :--- | ---: |
| C6-C7-O11 | $109.2(2)$ | C56-C57-O61 | $108.5(2)$ |
| C6-C7-C12 | $108.3(2)$ | C56-C57-C62 | $107.9(2)$ |
| O8-C7-O11 | $106.6(2)$ | O58-C57-O61 | $106.0(2)$ |
| O8-C7-C12 | $109.3(2)$ | O58-C57-C62 | $112.5(2)$ |
| O11-C7-C12 | $113.8(2)$ | O61-C57-C62 | $110.4(2)$ |
| C7-O8-C9 | $108.7(2)$ | C57-O58-C59 | $108.5(2)$ |
| O8-C9-C10 | $102.8(2)$ | O58-C59-C60 | $103.0(2)$ |
| O8-C9-C20 | $107.4(2)$ | O58-C59-C70 | $110.5(2)$ |
| C10-C9-C20 | $115.7(2)$ | C60-C59-C70 | $112.6(2)$ |
| C9-C10-O11 | $102.9(2)$ | C59-C60-O61 | $101.8(2)$ |
| C7-O11-C10 | $106.2(2)$ | C57-O61-C60 | $105.5(2)$ |
| C9-C20-O21 | $106.9(2)$ | C59-C70-O71 | $105.1(2)$ |
| C20-O21-C22 | $115.4(2)$ | C70-O71-C72 | $117.8(2)$ |
|  |  |  |  |
| C2-N1-C6-C7 | $92.1(3)$ | N51-C56-C57-O58 | $-60.8(3)$ |
| N1-C6-C7-O8 | $-54.4(3)$ | N51-C56-C57-O61 | $55.5(3)$ |
| N1-C6-C7-O11 | $62.1(3)$ | N551-C56-C57-CC2 | $175.2(2)$ |
| N1-C6-C7-C12 | $-173.6(2)$ | C56-C57-O58-C59 | $124.8(2)$ |
| C6-C7-O8-C9 | $124.7(2)$ | O61-C57-O58-C59 | $6.9(3)$ |
| O11-C7-O8-C9 | $6.6(3)$ | O58-C57-O61-C60 | $-29.2(2)$ |
| O8-C7-O11-C10 | $-27.3(3)$ | C56-C57-C62-C63 | $73.9(3)$ |
| C6-C7-C12-C13 | $-75.6(3)$ | C57-O58-C59-C60 | $17.0(3)$ |
| C7-O8-C9-C10 | $15.4(3)$ | C57-O58-C59-C70 | $-103.5(2)$ |
| C7-O8-C9-C20 | $-107.1(2)$ | O58-C59-C60-O61 | $-33.8(3)$ |
| O8-C9-C10-O11 | $-31.1(3)$ | O58-C59-C70-O71 | $-171.2(2)$ |
| O8-C9-C20-O21 | $-171.1(2)$ | C59-C70-O71-CC72 | $-161.0(2)$ |
| C20-O21-C22-C23 | $-170.1(3)$ | C70-O71-C72-CC73 | $166.5(3)$ |
| C24-C25-N28-C29 | $40.6(4)$ | C74-C75-N78-C79 | $-0.5(4)$ |
| C29-C30-N31-C34 | $-130.9(3)$ | C79-C80-N81-C84 | $142.3(3)$ |
| C30-N31-C34-C36 | $175.3(3)$ | C80-N81-C84-C86 | $-179.3(3)$ |
| C52-N51-C56-C57 | $-87.3(3)$ |  |  |

Table 2
Hydrogen-bonding geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {i }}$ | 0.93 | 2.46 | 3.365 (3) | 166 |
| $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A} \cdot \mathrm{O} \mathrm{O}^{\text {iii }}$ | 0.97 | 2.38 | 3.296 (5) | 158 |
| $\mathrm{C} 20-\mathrm{H} 20 A \cdots \mathrm{O} 85^{\text {iii }}$ | 0.97 | 2.51 | 3.147 (3) | 123 |
| $\mathrm{C} 52-\mathrm{H} 52 \cdots \mathrm{O} 8^{\text {iv }}$ | 0.93 | 2.54 | 3.451 (4) | 166 |
| C56-H56B $\cdots \mathrm{O}^{\text {5 }}{ }^{\text {v }}$ | 0.97 | 2.27 | 3.186 (4) | 157 |
| C60-H60B $\cdots \mathrm{O}^{\text {5 }}{ }^{\text {vi }}$ | 0.97 | 2.40 | 3.321 (3) | 159 |

Symmetry codes: (i) $x, y, 1+z$; (ii) $1+x, y-1,1+z$; (iii) $x-1,1+y, z$; (iv) $x, y, z-1$; (v) $x-1,1+y, z-1$; (vi) $1+x, y-1, z$.

After checking their presence in a difference map, H atoms were inserted at their geometrically calculated positions, except for those of the methyl groups. The latter were found from a circular difference Fourier synthesis. All H atoms were allowed to ride on their parent atoms $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and, for the methyl groups, to rotate around their local threefold axis. The isotropic displacement parameters of the H atoms were fixed at $1.2 U_{\text {eq }}$ of their parent atoms.

Data collection: XSCANS (Siemens, 1996); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PARST (Nardelli, 1983).

This work was supported in part by US Public Health Service grant 5R01 AI4800 from the National Institutes of Health (JGG and JG).

## References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Ariens, E. J., Wuis, E. W. \& Veringa, E. J. (1988). Biochem. Pharmacol. 37, 918.

Bergerhoff, G. (1996). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Dilmaghanian, S., Gerber, J. G., Filler, S. G., Sanchez, A. \& Gal, J. (2004). Chirality, 16, 79-85.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hypercube (1993). Chemplus: Extensions for Hyperchem. Hypercube Inc., Waterloo, Ontario, Canada.
Mason, J. I. (1993). Biochem. Soc. Trans. 21, 1057-1060.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Peeters, O. M., Blaton, N. M. \& De Ranter, C. J. (1979). Acta Cryst. B35, 24612464.

Rotstein, D. M., Kertesz, D. J., Walker, K. A. M. \& Swinney, D. C. (1992). J. Med. Chem. 35, 2818-2825.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1989). XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Van den Bossche, H., Willemsens, G., Cools, W., Cornelissen, F., Lauwers, W. F. \& Van Cutsem, J. (1980). Antimicrob. Agents Chemother. 17, 922-928.

